N74=35132

BIREFRINGING ARISING

TATION OF THE

(NASA-TM-X~-7C344)
FRCM THE REORIEN

POLARIZABILITY 2

BIREFRINGENCE ARISING FROM THE REORIENTATION OF THE

NISOTROPY CF HOLECULES IN

)]
oo
'GE; POLARIZABILITY ANISOTROPY OF MOLECULES IN COLLISIONLESS GASES
3 o |
C. H, Lin"

o .

N Ames Research Center, NASA, Moffett Field, Calif. 94035

m B

e and

- !

b J. P. I‘Ieritage'{r and T. K. Gustafson®

§ Department of Electrical Engineering and

| .

O
2 J Computer Sciences and the Electromic Research Laboratory
A University of California, Berkeley, Calif. 94720
©

R. Y. Chiao
ﬁ Department of Physics
P .
- University of California, Berkeley, Calif. 94720
4
5 and
S .
' §

a J. P. McTague
E | Department of Chemistry, University of California -
o . .
H ‘ Log 4Angeles, California 90024
Hu
H o
D-J [
O W
s ABSTRACT

1

The refractive index change in a collisionless gas is evaluated from the
otark shifts of the rotational energy levels that arise from the polarizability

anisotropy. For the limit of an extremely short-duration excitation, a multi-

level coherent effect results in delayed refractive index bursts. Both sta-

tionary and transient responses of this birefringence to an optical field are

considered for symmetrie tob molecules, with particular emphasis on the special

case of linear molecules.

I. INTRODUCTICN
The-birefringence induced by a uniform electromagnetic field in a fluid

composed of anisotropic molecules arises primarily from the reorientation of



the molecules due to their iﬁteractibn with the field through the moiétular
electric dipole moment! and the anisotropy of the static polarizability.?2
The present work is restricted to the rotational response of polar and non-
polar molecules excited by short optical pulses for which the interaction is
primarily through the polarizability anisotropy. Though the permanent dipole
interaction dominates for frequencies of the applied field ranging from dc to
microwave, at higher frequencies it plays a diminishing role. In liquids,
this rolloff of the rotational respoﬁsa with increasing frequency results from
a damping of the rotational motion due to viscous interaction with neighboring
molecules. For gases, collisional or inertial effects are responsible for
such a rolloff. Consequent;y, for both liquids and gases, at optical fre-
quencieé the interaction through the permanent dipole moment is extremely weak.

Molecular reorientation resulting from the interaction thfough the polar-
iza.iiity anisotropy depends on the square of the electric field, so that even
for optical frequencies there are low;frequency components that produce a
significant rotational response? and hence induced birefringence. This non-
linear optical birefringence has been treated for liquids by a generalization
of Debye's classical theory of molecular rotation.ls2® The result shows that
the angular distribution of the molecules achieves thermodynamic equilibrium
in a characteristic time that is 1/3 the viscous relaxation time deduced by
Debye for polar molecules. This characteristic time, typically of the order
of tens of picoseconds, i5 much larger than the mean time between molecular
collisions (collision time).

In gases for which the collision time is much greatei than the rota-
tional period of the molecules, quantization of the rotational motion is
important. Nevertheless, when the gas interacts with a smooth light pulse

having a duration much longer than the collision time, thermodynamic equilibrium



is maintained just as in liquids. For.this case, the classical thermodynamic
approach employed by Bloembergen and Lallemand? is a good‘approximation.

The primary concern of this paper is in the nonequilibrium situation,
i.e., birefringence in gases induced by optical disturbances shorter than the
collision time. The gas is thus considered to be "collisionless," and the
momentum associated with the molecular rotation must be considered explicitly.

We first deduce a nonequilibrium induced refractive index change for
linear molecules from the quartic and higher order Stark shifts of the rota-

tional energy levels evaluated from time-independent perturbation theory.

Such an approach is strictly valid for an interaction with optical pulses which,
although less than the collision time in duration, are longer than the inverse

of the fundamental rotational tfansition frequency. Howevef; even for a much
shorter excitation, the transiént response of the gas during the excitation is

in many cases of experimental interest quite well approximated by this station-
ary thepr&. The ;owest order nonlinear refractive index change which is directly
proportional to the square of the electric field intensity is tabulated for:
several gases composed of 1ineai molecules or symmetric top molecules. These
range from 4 x 10*13 (stat volt:/-::m)-“2 (mole/cmB)_l for H2 at 35° K to 2 % 10“10
(stat w:tlt/c:m)_2 (molelcmB)_l for CS2 at 320° K. Analytic expressions for the
refractive index change in both the high-temperature limit and the low-tempera-
ture limit are given. Saturation of this refractive index change for high field
intenéity is also discussed.

When the optical pulses are shorter than both the collision time and the
inverse of the fundamental quadrupole transition frequency, the molecular rota-—
tional response cannot follow the excitation instantaneously. Hence the refrac-
tive index change has an explicit time-dependence and can persist subsequent to

excitation. For such an ultra-short excitation, the refractive index change is



deduced from the density matrix equations for.fhe molecular rotation. For a

gas composed of linear molecules, it has already been shown4 that after excita-
tion with a single light pulse a periodic recurrence of the birefringence should
result, These recurrences, which are due to quantum interference, can have an
extremely short duration since many rotational levels can contribute. The indi-
vidual echoic bursts should be separated by a time given by 1/4Bc, where B is
the rotational constant of the molecules in wave numbers and eventually should

decay away due to collisional and Doppler effects.

In the present paper, this explicitly time-dependenf refractive index change
has been investigated-mofe extensively. In particular, we consider the trénsient
refractive index change during the presence of the optical excitation which in
many situations is approximated well by the stationary results. The influence
of_the excitation pulse width, the molecular rotational constant, and the gas
temperature on the amﬁlitude and the duration of the refractive index bursts is
also considered in detail. In additionm, the results are gemeralized to include
symmetric top molecules. |

The paper i1s divided into seven sections. in the following section, the
Hamiltonian describing the interaction between molecules possessing a linear but
anisotropic polarizability, and an optical field is considered. In section III
the time-independent perturbation calculation of the quartic and higher order
Stark shifts of the rotational energy levels of lineaf molecules is given and
the induced refractive index change for a gas composed of such molecules is de—
termined. In §5 IV a general expression for the lowest order time-dependent
_non—linear refractive index change for gases composed of symmetric top molecules
is derived from the density matrix representation of the rotational states. In
§ V, we determine the stationary refractive index change for symmetric top mole~

cules as. a limit of the time-dependent expression obtained in § IV and compare
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this result with that for a linear molecular gas. In § VI, the t?me-dependent.
behavior of symmetric top molecules is investigated and the special case of
linear molecules is discussed in detail. In the final section, the possibility
of detecting the echoic refractive index bursts, its application, and integral

properties of the time-dependent refractive index change are discussed.

II. THE PERTURBATION HAMILTONTAN FOR LINEAR POLARIZABLE MOLECULES

In this section, we define the Hamiltonian that describes the interaction
between the rotational energy levels of linear molecules withlan electric field
oscillating at optical frequencies. The interaction is assumed to arise through
the anisotropic polarizability and the optical intensity which'is, in general,
time-varying.

Linear molecules are pafticularly easy to treat since the polarizability
is cﬁaracterized by only two components - a” , the polarizability along the
molecular axis, and al, that perpendicular to the molecular axis. The change
in the potential energy of the rotational states produced by the interactiom
of the molecules with the radiation field is a function of Ao = m”-;dl , the anisot-
Topy, and 0, the angle between the molécular symmetry axis and some fixed direc-
tion in space. The latter is chosen to be the direction of the component of
the angular momentum which commutes wigh the square of the magnitude of the total
angular momentum vector.

For.a linearly polarized optical field propagating in the z-direction, the

electric field is written in the form:

Eo(t,z)

E = 3 exp{i(wt - kz)] + c.c. ﬁx ) 03]

where ax is a unit vector specifying the polarization direction of the field

and c.c. represents the complex conjugate of the first term. In this case, ﬁx



is chosen as the‘projection axis for the commuting component of the angular
momentum vector. Eo(t,z), the electric-field amplitude is assumed to vary
slowly in time (3Eo/at << mj and in space'(an/Bz << k}. In all cases, the
reaction of the medium on the field is neglected. Consequently,

Eo(t,zJ = Eo[t - k/w z], where the propagation constant k is equal to w/e, ¢
being the speed of light in the gas.

The perturbing Hamiltonian for such a linearly polarized field is

- > :
Hf = -%—pa<E - E>cos?o - %—aifg . B> (2)

in which <E + B> is the average over an optical cycle of the square of the
electric field amplitude or Eo(t,z)E;(t,z)/Z. Such an avefage results since
only the low-frequency term proportional to the time-averaged intensity of the
electric field can appreciablylperturb the molecular rotational energy states.
The angular response of the molecules to the torque at frequency 2w of <E - E>
is extremely weak because of molecular inertia. |
If the optical pulse is circularly polarized and propagating in the z-
direction, the plane containing the electric field vector is defined by the
mutually orthogonal unit vectors ﬁx and ay. The electric field vector can
be written in the form
= Eitf_’_z_)_ [ei(mt-kz) (8. + i3 ) + c,'c.] . (3)
2v2 *x .
For this polarization, the #irection of propagation ﬁz is also chosen as the
direction of the commuting component of the angular momentum, The perturbation

Hamiltonian, for this case, is

> 3

o1, e, ]
H' = -7 ba<E + E>sin6 - E-ulfﬁ . B> . (4)



ITI. STATIONARY REFRACTIVE INDEX CHANGE FOR GASES
COMPOSED OF LINEAR MOLECULES

In many of the experiments anticipated, the intensity of the optical excita-
tion is expected to vary negligibly for times much shorter than the period de-
termined by the transitions between the most highly populated rotaticnal levels
of‘the molecule. The refractive index change induced during excitation with the
optical pulse is then dependent primarily on the electric-field intensity and
not explicitly on time. A stationary solution of the Schroedinger equation is
quite adequate for this portion of the responée. This considerably simplifies
the calculation and allows a simple estimate of the refractive index response
for particular molecular gaseé.- The influence of saturation -due to a hiéh laser
field intensity is also more easily treated in the absence of an explicit time
dependence.

The intensity dependent optical index of refraction n = n, + n, <E.B> +

> > + > 3
n4<E'E>2 + De <E+E> can be obtained from the energy change, AW induced by the

presence of the electric field. Since 41 N < £W¢ is the susceptibility, where
- a<E-E>
N is the number density, 1
2
n= 1*4“‘1\7—""—""—"'8 3W+ (5)
d<E-E>

AW
=n +(L-n_ -4 N——)/(2n )
. 0 o 3<E.E> °

assuming a dilute gas. The energy change AW is obtained from the Stark shifts of
the rotational energy levels of the molecules.

There are‘two limiting situations which should be distinguished. The first
occurs for optical pulses much longer than the collision time. The presence of
collisions assures that the population distribution of the Stark shifted energy
levels is Boltzmann -~ labeled the thermodynamic equilibrium case. In Appendix

B, it is shown that both the quadratic and the quartic Stark shifts comntribute
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to the coefficient n,, which to a good approximation is given by the usual classi-

L2
cal expression3: ' AN (Aa)
45 ano :

The second case is based on an absence of molecular collisions and thus is
valid for optical pulses much shorter than the mean collision time. For this
case, which is the primary concern of the present paper, the population of each
shifted rotational level is frozen to the value determined by the initial zero

field Boltzmann distribution. The total energy change due to the Stark shifts

is then
@+
. -9 xmy
z: E: E e g, M
AW = J=0 M=~J"J .M (6)
Z
where Egoé is the unperturbed. rotational energy eigenvalue corresponding to a
2
particular angular quantum number J and its projection M along the chosen fixed
_ L w : -E}O]?{/kT hBe
axis. Z is the partition function »_ (2J+1) e °’ sand n = —. E is
=6 kT J,M

the perturbed rotational energy eigenvalue corresponding to thé unperturbed
Hamiltonian plus the interaction Hamiltonian of Eq. (2) or (4).

The appropriate solutions of the time-independent Schroedinger equation
for the Hamiltonian of Eq. (2Z) or Eq. {(4) are the spheroidal wave functions.5
Calculation of the corresponding perturbed rotational emergy eigenvalue EJ,M
presents severe difficulties and has not been expressed analytically for an

arbitrary field strength. The usual perturbation expansion, which is useful when

the electric field is weak, 1s expressed as

1 =
- 2 _1 . 7
EJ,M th(Ao + Ky e K4, + . v 0) 5 alfﬁ E> (7)



3
with K the perturbation expansion parameter, 1/2 Ag<E - §>/th and thBc is the

unperturbed energy eigenvalue J(J+1) hBe. Values for A., A . 1n terms

2, A33

of increasing numbers of algebraic terms, as obtained from the standard per-

l!

turbation approach are tabulated in Ref. (5). These can only be used as a start-
ing point for the refractive index calculation. Considerable effort is involved
in combining the factors and in simplifying the resultant expressions.

If Eq. (7) is substituted into Eq. (6), AW for the collisionless case can

be expressed as

thnENi(n)Kl
<AW> = ;n (8)
= L _J(I*+1)n hBe
where the sums N, (n) = 2, 2. e , and N = == .
1 J=0 M=—J 1 kT

The first three coefficients in the nonlinear refractive index expression,

obtained from Egs. (8) and (6) are

= 27N 2 (92)
= 3TN 3 (9b)
™ = ~2KThBen_ N, (n)&a*/Zn
e = = — Nq(n)aaqun 9e)
kT(th)2n°

Céﬁsiderable simplifitatien eoccurs if sum rules over the projection auantum
nupberhifor the ccoefficients Ai of the varioug orders in the perturbation ex-
pansion can be obtained. We thus wish to consider thé pertinent aspects of
the perturbation theory more deeply and in particqléf to outline the calculation

of these.



For this, the collisionless case, the nonlinear refractive index change is

independent of the quadratic Stark shift hBCAlK. However as pointed out earlier

and in Appendix B this can contribute to the coefficient I, after collisions
have significantly thermalized the population among the perturbed states.
For both linear and circular polarization the quadratic shifts, which

respectively are6’7

= -1, % 2J(J+1) - 2M2 - 1
AWI Kllth = -3 Aa<E » E» GI-1) (37+3) (10a)

1, 2 2J(J+1) + 2M2 - 2 : (10b)
My = gttt B S )

indicate that each rotationai level is shifted down in energy in the presence of

an optical field (Figs. (1) (2)) since the induced moleculaﬁ polarization in the

direction of the field for a molecule in any state is positive. Furthermore,

the averaée of this negative quadratic Stark shift, over the quantum number M

of the'rotationallsublevels, is independent of the rotational level quantum num-

ber J since the sum rule 'gi Alﬂ"'%J(2J+1) (J+l) is valid. Thus each level {J) con-

tributes equally to the mazt;g;opic'linear polarizability (a||+ Zul)/3 per molecule,
This decrease in rotational energy indicated by the quadratic Stark shift

is‘quite in contrast with that which results from a permanent dipole interacting

with a low-frequency field, which for comparison is displayed to the left of

Fig. {1). 1In its rotational ground state, the permanent dipole moment tends to

align along the direction of the applied electric field and the interaction energy

is negative. On the other hand, in states for which M = 9, J # 0, the permanent

dipole momenté spend more time oriented in opposition to the electric field;

hence the interaction energy is greater than zero and the energy levels are shif=-

ted up. For states with M # 0 in addition to this, a component of the torque is

=10~



present which tends to align the molecules along the direction of the electric

field. Hence, the levels can be shifted either up or down. As a result aside

from the ground state, the energy of each rotational 1evél J averaged over the

quantum number M is not changed due to the éuadratic Stark shift. Consequently,

the influence of the permanent dipole moment on the linear polarization of a

gas in thermodynamic equilibrium arises entirely from the ground state.1
Obtaining the nonlinear collisionless refractive index coefficient n, of

Eq. (9a) necessitates a calculation of the third term in Eq. (7) thAZKz.which is

the quartic Stark shift in rotational energy. The perturbation result con-

gists of two contributionsEWhich arise from a coupling of the J,M rotational

energy level to thé two neighboring rotational states satisfying AJ = 2, AM = 0,

as determined by the selection rules for the cosze dependence of the induced

dipele moment. This contribution to the induced energy shift of the rotational

state J,M can be interpreted as a mutual repulsion of these coupled states.

After carrying out the teaious algebraic multiplication and factorization re-

. quired éo combine and simplify the two separate terms given in Ref. (5) one

can express the quartic shift as

M4YP(J) - M2Q{J) + R(J)
(23-3) (27-1)3(2J+1) (2J+3) 3 (2J+5)

W, = hacx_zxz = hBck? (11)

where

P(J) = 80J3 + 120J% + 172J + 66
Q(J) = 96J5 + 240J% + 88J3 - 108J% + 68J + 60
R(J) = 1637 + 5638 + 12J5 - 110J% - 44J% + 7232 + 223 - 6 .

-1]~-



- This is the most important term in the series expansion of the energy shift

due to the optical field. In Fig. (2), in which the energy levels of several

of the lower rotational states are plotted as a function.of the perturbation

Parameter K, the curvature near K = ( gives.the quartic Stark shift. This can

be either positive or negative depending upon the part;cular energy state.
Although a relatively complicated expression, the sum of the quartic Stark

shifts over the projected quantum number M, which enters into the most important

nonlinear coefficient n,, is particularly simple. This can be conveniently ob-

tained from Eq. (8) and is expressed as

FL() - f& A, = - g—— - —2 . (12)
2 M==J 601(25-1)2  (20+3)2

Higher order terms in the perturbation expansion are necessary to describe
the rotational energy level shifts for optical intensities such that K >> 1.
Compdter’multiplication and factorization programs were employed to express the
next two orders, AB and lq, in the form included in Appendix A, which is con-
venient for deducing the sum rules. It will be apparent that many more terms
are required for an adequate description of such a saturated case, excépt for
the low-temperature limit when only the ground state is significantly populated.

This presents major computational difficulties which have not been pursued.

13 and A4 considerably simplify when the sums over M are taken. If the re-

sults are expanded as a partial fraction expansion one obtains

F () = 55 Ay = 2%0 1 } 1 _ 1,1
M=-J (2J-1)2  (2J+3)2  (23-1)%  (2J+3)*%

(13)

-12-



J
1 9 9
F ()= 3 a = -
4 Mg b 00 620132 16(20es)2

e 99 ___ 5 15

4(2J-1)%  4(23+3)*  (2J-1)6

+ 15 _ 9 + 9 . (14)
(2J+3)%  32(23-3)2 32(J+5)2

Using the sum rules, Eqs. (12) to (14), the sums Ni(n) in Eq. (8) can be
handled with relative simplicitiy, at least numerically. Calculations of
Nz(n), Ns(n), and N4(n) are shown as functions of n in Fig. 3, along with the
factor Zn. |

' Particularly simple analytical expressions can be obtained for Ty Dy,
and n6 in the low temperature limit (n > 2). The nonlinearity in the refrac-
tive index is then determined solely by the Stark shift of the ground state

and the coefficients of the refractive index change are approximately equal to

_ 47N (Aa)?
n, = -3§'thno (152)
3
n, = gggi (8a) (15b)
(th)2
_ 137N (Ac)"
M = “Toizgss (15¢)

3
(hBe) n,

Since ng is negative, the saturation of the refractive index with an in-
creasing optical field intensity is well approximated by these three coefficients
as illugtrated in Fig. 4. The saturated value of 4.9 at K = 50 is close to
the expected value for complete alignment in the direction of the field, which
is 4,.2.

-13-



The other extreme, that of the high temperature limit (n < 0.01) is appli-

cable to many molecular gases at room temperature {for CS$, at T = 300° K,

2
n=5x 10h4). In this 1imit, Zn = 1 and Nz(n) can then be approximated by

™M

2. 1}, which from Eq. (12) is - 1/30. Thus
0 M=-J

o
]

_ 2nN Aa?
" kW, (16)

This value of n,, which ariszes entirely from the quartic Stark shifts, is a
factor of 3/4 smaller than the usual thermal equilibrium value,3 which has con-
tributions from the quadratic shift as well (Appendix B).

The similarity of this expression to the thermal equilibrium expression
and in particular to the lack of dependence on the quantized Behavior of the
gas suggests tﬂat Eq. (16) ié, in principle, derivable from a classical des-
cription of the molecular interaction with the field. This calculation appears
to be extremely difficult since the absence of thermodynamic equilibrium implies
that the nonlinear equations of motion for each molecule would have to be solved
explicitly and an orientational average then taken. - |

Useful analytical expressions for n, and ng are much more difficult to
obtain in the high temperature limit. From Eqs. (13) and (14) the sums of the

-]
sixth and eighth order Stark shifts over all the levels are both zero since ZF3(J)
J=0

oo
and 2: F4(J) are both equal to zero. This is also apparent from Fig. (3).
J=0 :

Thus in contrast to the case of Ny, for which the Boltzmann factor could be
assumed equal to 1 for all temms in Nz(n) the deviation of the Boltzmann factor
from unity in N3(n) and NA(H) must be considered in order to obtain analytical
expressions for_n3 and n,. Expansion of the Boltzmann factor in terms of n

results in divergent series in the sums over J and hence is not useful. Due

14~



to the compensating Stark shifts howevér, without additional higher order co-
efficients the terms n, and . do not specify the saturated behavior. Hence
we shall not pursue these problems further.

With regards to a more accurate description of the refractive index satura-
ation one might consider a numerical calculatiom the Stark shifted energy eigen-
values for a strong perturbation. Such calculations have been attempted, How-
ever these have been restricted to rotational levels for J 2 10 which is in-
sufficlent for an evaluation of the nonlinear refractive index.

Stern8 obtained numerical solutions for the energy levels by solving for
the roots of an implicit continued fraction expansion of the energy eigenvalues.
However, these roots are also.extremely difficult to determine for large values
of the perturbation parameter (K >> 20). These results have been extended by
Curl et al.g by combining a numerical diagonalization of the approximated
Hamiltonian matrix with the results of the continued fraction expression. In
this manner, they are able to evaluate the perturbed energy for some lower energy
levels for values of K up to 500,

The Stark shifts for a few rotational energy levels obtained both by the
power series approximation including perturbation terms up to laland numerically
by Curl et al. are plotted in Fig. 2. For K = 10, for which the power series is
qgite close to the results obtained numerically, the motion of molecules can be
described as "rotational." As the perturbing energy is increased, however, the
’ moiécular rotation is hindered and eventuallythe motion is more properly described
as "oscillatory."lO Groués of energy levels merge, each group being character=~
ized by a librational quantum number. (This behavior is indicated on the right-

hand side of Fig. 2.) It is apparent that the limiting value of the refractive

index is that obtained by total alignment of molecules, n = 1 + ZHNa||. This is



indicated directly in Fig. 2 since the slope of the energy levels asymptotically
approach -1 for extremely high electric-field intensity.

The most important coefficient to consider experimentally is n, since it pro-
vides the strength of the various possible nonlinear interactions. This coeffi-
cient is given in Table 1 for several gases of potential interest. For COZ’ CSZ’

C2 H2 and N2 5

The coefficient for hydrogen at 35° K and deuterium at 40° K can be approx-~

0, n, is well approximated by Eq. (16} at 300° K.

imated by the low-temperature limit if thermal equilibrium is assumed. Nuclear
statistics have been taken into account in the calculation for Nz and Oz(ll). Even
though these twe molecules have relatively small moments of inertia, the results

do not differ appreciably from those evaluated from Eq. (5). The index coeffi-
cients for HCl and HBr vapors‘at room temperature were determined by usiﬁg Nz(n)

and Zn from Fig. 3 in conjunection with Eq. (9).12

IV. FIRST ORDER DENSITY MF-LTRIX CALCULATION OF TIME-DEPENDENT REFRACTIVE
INDEX CHANGES OF GASES COMPOSED OF SYMMETRIC TOP MOLECULES

In many cases pulsed optical or infrared excitation of vapors composed of
anisotropically polarizable molecules will produce a refractive index change which
is quite well described by the stationary results during the exciration. In addi-
tion to this adiabatic portion of the response, however, quantum mechanical inter-
ference occurs. This is appreciable if the frequency spectrum of the pulse inten-
sity overlaps many rotational transitions and results in an index of refraction
subseéuent to the excitation. For many di-and tri-atomic molecular vapors excited
by pulses typical of the mode locked glass laser an intermediate regime in which
both the adiabatic and quantum interference effects are present is expected.

In the present section we wish to introduce two generalizations of the previous
results to treat the expefimentally expected behavior for a varlety of vapors.

Firstly, the time dependence in the nonlinear refractive index change will be

=16-=



treated by utilizing the density matrix equatipns for the rotational motion. The
calculation will, however, only be carried out for the lqwest order in the opti-
cal intensity so that saturation will not be considered.' Secondly, the rotational
inertia along the figure axis as well as that perpendicular to the figure axis
will be considered to include the more general class of symmetric top molecules,
This additional inertia is expressed through additional terms in the unperturbed
Hamiltonian. As for the special case of linear molecules, the polarizability is
?ti;l specified by two components - a!l s parallel to the figure axis and al,
“'fpé£§eﬁdiqular to the figure axis. As a resuit, the directionally-dependent, per-
turbing Hamiltonian is the same as for linear molecules.

In section V the stationary limit ofJEhé;généfal fimé dependent susceptibility
change is obtained. This will provide n, for symmetric molecules. The presence
of the additional states as specified by the quantized component t A along the
fiéure axis éonsiderably complica£es the perturbation calculation for the station-
ary Stark shifts. Although the quartic Stark shifts are obtained relatively easily,
terms of any higher order are extremely cumbersome. iﬁ adgition, numerical cal-
culations of the highly perturbed rotational states have apparently not been
attempted thus far.

In section VI we specialize the discussion to the teﬁporal development of the
quantum interference exhibited by the collection of evolving superposition states
induced by a sufficiently short excitation.

To proceed with the calculation of the refractive index change for symmetric
top molecules we denote the element of the density matrix between two rotational

states specified by the quantum numbers I, M, A and J, M, A by p In analogy

. I1,I1°
to linear molecular gases, the quantum numbers M and A need not be considered -
explicitly. However, it must be kept in mind that whenever a sum arises it is

to be taken over M and A as well as J.

-17-



The equations of motion for the density matrix arel3

ap . )
I,J _ i
at R %(DI,KHK,J_ 3 HI,KpK,J) (17)

where H = H® + H' is the total Hamiltonian, H' being specified by expression

(2) or (4), depending on the polarization. From this point on, we will

specifically discuss linear polarization.

The matrix elements of H°, the unperturbed energy eigenvalues, arebsll
Hg-A,=.thJ(J+1) + hc(A - B)AZ™ -

where A and B are, respectively, the rotational constant about the figure
axis and that about the axis perpendicular to the figure axis.
The matrix elements of the perturbing Hamiltonian are

H = -1/2 Aa<E + E> QI 3 The QI 3 which are the matrix elements for

]
1,3
the operator cos28, can be obtained by using the table given by Cross et al.l"

These matrix elements are

i} 1 (I2-M2) (32-42) [ (J-1)2-M2] [ (3-1) 2-42] |'/2 (19a)
QJ,J-z T J(J-1)(2J-1) (2J-3) (2J+1)

1/2
_ 1 [(J+22-M2] [ (J+2)2-A2] [(J+1)2-M2][(J+1)2-A?] (19b)
Q Je2 T TFrD G2 (2543 (29+1) (2745)

Q o (J%-M2) (3202 | [(+1)2-M2] [ (J+1)2-A%] _ M2A2 (19¢)
b g2025-1) (2041) (J+1) 2 (2J+1) (23+3) J2(J+1)2

where A and M are not included explicitly as indices on the Q terms since they
remain unchanged during a trﬁnsition.

The reéfractive index can be determined from the induced susceptibility which
is obtained from the trace of the product of the operator n(Ac c0528 + al) and the

density matrix obtained from Eq. (17).
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The zeroth order of approximation gives the linear refractive index n ,
which depends only on the values of the density matrix elements prior to the
21N

optical disturbance. One readily finds that n, =3

with the theorem of spectroscopic stability!S and the previous result from

(all+ Zal? in agreement

the quadratic Stark shifts.
The lowest order values for the off-diagenal components of the density
matrix and the corresponding nonlinear refractive index change can be obtained

immediatély by replacing the'QI J in the results for linear molecules in
2

Ref. 4 by those of Eq. (19). Since the quantum number A as well as M does
' not change during a rotational transition, the only difference in the final

results is an additional sum over the quantum number A, Thus the expressions

for pJ+2’J and An (Ref. 4) are rewritten:

t . o " y
exp(-let J<E E>dt] exp(int) (20a)
o

Pre2,J = -i[FJ+2,J J;

*

P,0+42 = PJe2,J (20b)
o iw.t t -iw,t!
An(t) = %—Tﬂ TJIm e JJ' e J <E _ﬁ>dt' (21)
o J=0 t '
. 0
re - » + +
where to is an initial time for which <E+E> can be assumed to be zero. TJ is
the double sum
-3
T, = R Q Aa {22)
J M A g J+2,J°J+2,J

with wy = 47Bc(2J+3) and Im, the imaginary part of the term inside the bracket.

As previously,
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- (0) (03
Rys2,0 = (”J 37 P3e2,542) 2| Qa0 (23)

where p(O) is the initial zero field thermal equilibrium value of the diagonal

component of the density matrix:

(0) .
0{) = < : (26)

Z Z(2J+1)e i A/

J=0 A=-J

In the above expression for T., the sum over M can be explicitly carried

out, giving

L E [ © _ 2][(J+1)2-A2]{(J+2)2-A2]' | (25)

15h PI+2,J+ (J+1) (3+2) (25+3)

This obviously reduces to the results for a linear molecular gas when

= 0.4

V. ©STATIONARY REFRACTIVE INDEX CHANGE FOR
SYMMETRIC TOP MOLECULAR GASES
To evaluate the stationary, intensity-dependent refractive index from
ﬁq. (21), it is assumed that <E - B> is slowly varying with respect to

-iw.t -t

J% and that <E - B> is zero for t' = o Integrating Eq. (21) by parts

and neglecting time derivatives of <E + E>, one obtains for any given time t:

a3
J=0

-

. E> (26)

El‘-‘

"o
which is a generalization of Eq. (9) obtained for linear molecules using

the time-independent approach.
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In the low-temperature limit, ﬁq. (26) reduces to (15a) since only the
ievel with the lowest energy E(J =0, A =0, M = 0) is populated. In the
high-temperature limit, no analytic expression analogous to Eq.(15) can be
deduced with assumptions corresponding to those employed for linear molecules,
The expression for fhe induced refractive index change in this case can be

conveniently written:

An = F(T}[%;f ﬁgz) ] <E - B> @n

The coefficient F(T), in general, dependsion temperature and on the rotational
constants A and B, Numer1cal calculatlons have been made for the CH C1

.molecule, which has polarlzabllltles ® 1 = 5.42 x 10~ 24 esu and al-— 4.14 x 1072
esu, 6 and rotational constants A = $.090 cm™ = and B = 0.4434 cm “1.17 pesults

show that the coefficient F(T) for this molecule is 0.8434 at T = 206° K and

0.8461 at T = 1000° K.

For temperatures high enough for F(T) not to vary significantly
(> 1000° X for CH3C1), the refractiﬁe index change depends on A and B only
through their ratio. This dependence is indicated in Fig. 5. The coeffi-
cient F(T) decreases with decreasing A/B to approximately 0.4291 when
A/B = 1/2, which is the vglue for an "ideal ring molecule." Such a decrease
in thé value of F(Tj with decreasing A/B results from the combined effect of
the decrease in QI,J with increasing A and the decrease of the unperturbed
rotational energy with a décreasing A/B, The latter implies that the states
with high A (and hence low values of QI,J) are weighted more heavily in the
sum over A in Eq. (26) .

The coefficient n, and thg factor F(T) of several symmetric top molecular

gases are given in Table II.
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VI. COHERENT TIME-DEPENDENT REFRACTIVE INDEX CHANGES IN
GASES COMPOSED OF SYMMETRIC TOP MOLECULES

The rotational response of a molecular gas to an optical pulse exhibits
a nohnegligible explicit time dependence if the pulse duration is not too
long. For symmetric top molecules, such will be the case for durations less
than or equal to the inverse of the fundamental quadrupole transition fre-
quency, which is 1/6Bc. The spectral content of the pulse envelope then over-
laps the rotational transition frequencies and a significant number of transi-
tions can occur among the Stark shifted rotational states evaluated in § II.
These transitions are, of course, not taken into account in the stationary
perturbation calculations.

Thg transitions result in a net absorption of energy by the gas,-leaving
the rotational population distribution, and hence the refractive index, per-—

turbed after the passage of the pulse.

Such a perturbation can also be interpreted in terms of a transient
development, dﬁring the optical excitation, of superpositions of pairs of
rotational states. At the termination of the excitation, the percéntage
of each state composing the pair ceases to change, while the relative
phase between the two states continues to evolve at a constant rate equal

.to the transition frequency between the two.

The nonlinear refractive index change subsequent to the optical excita-
tion is described by a collection of such steady-state superposition states,
each of which is thus evolving with a well-established phase relationship
with respect to the remaining superposition states., The collection is

expressed by a Fourier sum that has components at the quadrupole transition
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frequencies wy = 4nBc(2J+3). Such a sum is obtained from Eq.-(21) by
-extending the upper limit to infinity, this being justified since <t - E>
is zero for all t subsequent to excitation.

The Fourier comﬁonent for a particular frequency Wy is the product of
the Fourier transform of the optical intensity at frequency Wy and the
coefficient TJ defined by Eq. (25). For linear molecules for which the sum
over A can be dropped and A set to equal to zero, the Fourier sum over the
rotational frequency spectrum has Béen shown to represent short periodic
bursts in the refractive index, spaced in time by intervals of 1/4Bc.*

A complete analysis of the excited fefgaétive index éhéﬁgé, in particular
"one that includes the response duriné excitation with the optical pulse and
the sfrength of the subsequent short bursts as a function of pulse width,
requires a numerical integration of Eq. (21). Figure 6 illusfrates the over-
all features of the time-dependent refractive index change. This particular

example pertains to CS2 vapor (A -~ =, B = 0.1091 cm-l)l7 for an optical ex-

citation assumed to have a Gaussian electric field profile given by
E = %—A exp (-2t2/1%) (M0fr 4 oivty | (28)

For a relatively leng pulse (5 psec or_longer), the initial refractive index
change closely follows that given by the stationary quartic Stark shift (hence
the pulse shape), and the strength of the quantum interference is small com-
pared to that of this initial response. With a reduction in the pulse width
(1 psec or shorter), the refractive index change occurring simultaneously
with the excitation diminishes. The initial response gradually.attains the
time profile expected of the burst due to quantum interference. When pulse
width T becomes much less than the width of the bursts in refractive index,
the entire index change is completely described by the sum over the fully

developed or steady-state superposition states.
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For symmetric top molecules, the particular Fourier series describing only
the refractive index subsequent to excitationm by a Gaussian field described by
Eq. (28), as determined from Eq. (21), is

3/2N1A2 :E: T, exp(—wﬁrzllﬁ)sin Wt (29)

J=-0

An(£) =T

The development of the burst in refractive index can be traced by initially
congidering the evolution of only one of theigﬁbérpositidﬁ4states represented
by this series. For simplicity, a delta function excitation is assumed

(exp[~m§12/16] = l,A2

= 2/t) and the J = 0 rotational state 1s considered at
t = 0. A certain number of the molecules initially in this state will be forced
by the optical pulse into a superposition with the J = 2 étate, in particular

the one for which M = 0. The wave function of the molecule having undergone

such a change can be written hslg
R s 'i(%t"[) l(E n) (30)
== 1{0le"\2 " T)+ [2]e\2 " F 30
. vz _

where [0] stands for the wave function for J = 0 and [2] stands for the wave
function for J = 2, M = 0. The former is proportional to the zeroth-order

and the latter to the secbnd—order ordinary Legendre polynomial. One observes
that this superposition of the wave functions gives the proper form for the

off-diagonal components of the density matrix elements in Eq. (20) and the
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phase evolves at a rate w, as stated earlier. The'probability density func-
tions |y(t) ]2 for times t = 0, n/Zmo, n/wo, and 3m/2uw_, subsequent to excitation
and the differences |¥(t)]2 - |¥(0)|2, which are proportional to the induced
anisotropy, are shown in Fig. 7.

At t = 0, immediately after the perturbation is applied, the two states
are superposed in quadrature. This leads to the most uniform angular distri-
bution of the total probability amplitude and implies that the molecules re-
main in a random orientation just after the perturbation. However, the state
evolves so that, at a time equal to 1/4 the transition period, the probability
amplitude is highly peaked in the direction of the electric field, i.e., the
molecules tend to be oriented.along the direction of the field. After another
fourth of a period; the probébility amplitude is distributed uniformly once
more. Three—fourths of a period after the disturbance, the probability func-
tion is peaked again, but in a direction perpendicular to the applied field.
We see from Figs. (7e¢) and (7f) that the net anisotropy. of the probability
density function at wt = 3n/2 is equivalent to that at wt = /2, but in the
perpendicular direction. The wave function returns to the original superposed
state at the end of a full period. This behavior occurs periodically as ex-
pressed by this sinusoidal evolution of the superposition state,

In general, the state with angular momentum quantum numbers J,M will be
supérimposed with a state with quantum numbers J+2,M or J-2,M and any of these
superposed states behaves in a manner completely analogous to the one discussed

above. In particular, the evolution of the superposed state consisting of a
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linear combination of the eigenstates of J and J+2 can be repfcsented by the
‘phase factor exp (int) in Eq. (21).

In general, the width and shape of the bursts in the refractive index
change depend on the width of the excitation pulse as well as the spectral
content of the coefficients TJ. When the pulse is very short so that the
Fourier spectrum is essentially constant over the dominating rotatiomal
transition frequencies, the spectral content of the refractive index is lim-
ited by the spectral width of TJ. The relative amplitude of TJ as a func-
tion of J is plotted in Fig. 8 for 052 vapor at 296°K. The effective rota-
tional levels range roughly from J = 20 to 70, which gives a bandwidth of
Af = 4Bc(70-20) = 6.5 x 101l sec_l. Hence the width of the complete bufst,
covering both the positive peak and the negative peak, is approximately
At = 1/Af = 1.5 x 1072 sec. The full width of either peak at half the
maximum amplitude is about 1/3 of this value or 0.5 x 1(}_12 sec.

For the opposite extreme, that of a pulse having a spectral width for
which only relatively few of the thermally populated energy levels are ex-
cited, the width of the burst is roughly proportional to thg pulse width,

Both extremes in excitation pulse width, extremely short or extremely
long, produce a small number of superposed states and consequently quantum
interference strength. The most efficient utilization of a burst of optical
energy occurs when-it is contained in a time duration that is roughly the
inverse of the frequengy of the dominating rotational transitions. Since

for large J, for linear molecules, T._ is approximately proportional to

J2 exp (—thBc/kT), the level with the maximum value for this factor is

/2

J

,» which for C52 at 296?K is approximately 44.4

. ~ 1
given by Jmax = (kT/hBc)

The optimum pulse width is the inverse of 4Be Jmax
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.1 [nec]t/2_ ~12 g7y -1
Top = 4Bc [ﬁ"] =5 x 10 (BT) /2 (31)

A numerical calculation over a temperature range 100° to 1200°K for different

/2

values of B gives Top = 4.5 x 10_12 (BT)—:L in close agreement with this
approximation expression. Figure 9, in which the peak amplitude of the re-
fractive index in CS2 1/4 Bc after excitation is plotted as a function of
excitation pulse duration, illustrates the range about the optimum pulse
width which can be tolera;ed without decreasing the strength of the echo
significantly.

Computed refractive iﬁdex profiles due to quantum interference induced
by Gagssian—shaped light beams in CS2 vapors and CH3Cl vapors at 296°K are
plotted in Fig. 10 for various pulse widths. One notes that the normaliza-
tion constant for the latter is dns = F(T){ZHN(AQ)Z/BORTHO], with E(T) = 0.8434.

Comparing Fig. (10a) with (10b), we see that the time profiles are
almost the same for the linear and symmetric top molecules. They are both
antisymmetric since the fundamental frequency of the Fourier components in
both éases is 2B and the function is odd. On the other hand, for the
symmetric top, the normalized refractive index change can be larger than
uﬁity in contrast to that of the linear molecule, For CH3Cl vapor, it is
1.08 at room temperature. However, since Ans = (0.843 Anm, the amplitude
is still smaller than that of a linear molecule having the same rotational

constant B and the same polarizability anisotropy 4dc. In addition, for

the symmetric top mnlécule, the level of maximum contribution tends to have
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a high J value and hence an optimum pulse width shorter than that of the
linear molecule. Consequently, the width of the burst is also shorter for

the symmetric top molecule. (This width cannot be computed from Eq. (31).)

Table III lists the optimum pulse widths and echo periods for several
gases at 296°K. The widths have been obtained from Eg. (31) for linear
molecules and numerically for the remaining ones. CS, and benzene appear
- particularly favorable for initial investigations. They both have large
anisotropies and relatively small rotational constants and require optimum
pulse widths that could be achieved with present mode-locked lasers.

Interference with the rotational coherence will arise from collisional and
Doppler effects. Significantly popﬁlated excited vibrational levels as well
as the centrifugal stretching parameter could also interfere with the rota-
tional coherence, provided the rotational constants vary significantly.

For CS;, the rotational constant is hardly effected by centrifugal
stretching‘{for the level with J = 200, thé increa;e in rdtaﬁional constant is
0.01%). In addition, the rotational constant of the vibrationally excited mole-

cules is barely different from that of the unexcited ones. Hence, though 11%

gf the molecules are in fhe first excited state, the induced refractive index
IShouId not be changed appreciably. Note that the lowest vibrational levels
of benzene is above the highly populated rotational levels. In addition, the
small centrifugal stretching parameters coupled with é small rotational con-
stant and a large anisotropy in polarizability make this particularly favor-

able as well.24
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VII. INTEGRATED STRENGTH AND DETECTION OF THE REFRACTIVE

INDEX RESPONSE

Although the amplitude of the refractive index change subsequent to opti-
cal excitation is highly dependent on the optical pulse duration, the time
integration of the entire induced refractive index response depends only on
the energy of the exciting pulse and not on its duration.

From expression (21), the total area AT is given by

bl o . .
Ap = ?11& Z:TJI”'J. Sk ft <E . B> e_m‘Jt'dt'dt (32)
° =0 ~o —e o
For generality, <E .+ B> is assumed to have an arbitrary time profile, although
Gaussian-shaped pulse envelopes are reasonably justified for most Q-switched
and’ perhaps mode~locked laser pulses. Rather than obtaining a delayed refrac-
tive index burst that is antisymmetric about its center of gravity, Eq. (21)
shows that the asymmetric part of the optical pulse gives rise to a superposed
contribution that is symmetric about the center of gravity. For example, Fig, 1l .
illustrates a sequence of bursts induced in 052 gas at room temperature by an
optical excitation with both symmetric and antisymmetric components of the in-

tensity as specified by

<E - B> = Ao(t) + Ae(t) (33a)
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where

A, (1)

{c1 exp[-4(t+1/4)2/12] - exp[_-4(t-£/4)2/r2]} {33b)

A, (1) = Cp exp[-4t2/12] (33¢)

and C; and Cp are constants.

It is evident that the net contribution to the total time integrated re-
fractive index change is zero subsequent to t = (8Bc)~! for the portion of the
excitation which is an even function of t and subsequent to t = (4B¢)~! for
that which is an odd function of t. Thus we need consider only times less
than these for the two contributions, respectively. Changing the order of
integration for each of these in Eq. (32) and eXplicitly carrying out the in-
tegration with respect to t, one obtains

1

1

‘ © T TBC 4Bc
A= D[ agenae [ a e
o Jo0 YI v - © o O
1 1
o T 8Bc LBc
~4mN s . 1 el ) 1 )
n_ J;O a f-m Ae(t )sin wst dt +J._w Ao(t' Jcos wyt dt A (34)

If the pulse width t is shorter than (8Bc)-!, where T is the full width at half
intensity, the upper limit of the integration can be extended to infinity..
From symmetry, the second set of bracketed terms vanishes after the integration.

The total area reduces to

AL = am 2 f <§ < B> dt (35)

o J=0 “J

which is just the total area that would be obtained from a stationary calcu-

lation.
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The upper integration limits can be taken without loss of generality as
1/8Bc + n/2Bc¢ and 1/4Bc + n/2Bc, respectively, for even and odd components of
the excitation, where n is a positive integer. Thus, Eq. (34) is applicable
for pulées of duration (BBc)-l or larger. However, for pulses having such a
long duration, the strength of the quantum interference is negligible and
the refractive index is given very well by the stationary result. |

The experimental detection of the transient portion of the refractive index
change should, according to the abo#e, roughly depend only on the total energy
of the optically exciting pulse. This is true for a detection,technique that
produces a signal linearly proportional to the birefringence2 and a probe pulse
of the same duration as the birefringence pulse. ‘The recent technique for prob-
ing short-duration birefriﬁgence employed by Duguay and Hansenl9 involves the
square of the birefringence for which the detected signal will increase with
a decrease in the exciting pulse width up to the point at which the birefring-
ence becomes independent of the pulse width.

The detectability of the delayed bursts in refractive index for several
molecular species is tabulated in Table IV. As for Table III, the optimum
length of the excitation pulse has been estimated numerically for symmetric
top molecules and from Eq. (31) for linear molecules. The maximum relative
phase shift between the electric field components perpendicular te and paral-
lel to the polarization direction of the excitation pulse and produced by
the refractive index burst has also been listed as A¢. This has been evalu-
ated for a length of 1 &, at a wavelength of 0.53uy, and for a peak power den-
sity of 500 MN/cm2 for the excitation. The resultant fraction of energy
which would be transmitted through an analyzing polarizer has beén estimated
assuming the probe pulse to be centered on the peak of the refractive index

profile for the 1 m length and, in addition, that it is much shorter than the
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duration of the refractive index profile. C(onsequently, this is the optimum
value that would be obtained. If the probe pulse is of the order of the
width of the echoic response then one would expect this to be reduced by
approximately a factor of 2.

The resultant signal-to-noise ratios that can be achieved for the rather
conservative optical intensity chosen are encouraging. This has been obtained
as the ratio of the above percentage of the energy of the probe pulse which is
transmitted by the crossed polarizers due to the echoic response to that which
would be transmitted in the absence of the echoic response. The latter is
primarily determined by the extinction ratio of the polarizer pair, which can
be of the order of 10_6; Scattering due to the vapor and ;he window of the

sample cell have not been included but should not present any difficulty.

VIII. CONCLUSIONS

The sequence of refractive index bursts, which is essentially the rota-
tional response of the molecule to a delta function excitation; should be
useful for various spectroscopic measurements, The spacing between the bursts
ﬁrovides a direct measurement of the rotational constant of symmetric top
molecules. This method would be particularly convenient for relatively large
organic molecules that possess a center of inversion, such as pyreme. For
conventional spectroscopic approaches, broadening would cause the rotational
transitions to merge. In the time domain, however, the bursts are diminished
in amplitude due to Doppler or collisional effects but should still be de-
tectable. This reéult together with the fact that molecules with large moments
of inertia exhibit a relatively long (=3 x 10-9 sec for pyrene} delay before

the appearance of the refractive index change and an optimum pulse width that
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is longer (=2 x 10_12 sec for pyrene at 296°K) provide an advantage.

The transient response in the refractive index should alsé provide a use-
ful means of studying collisional phenomena in gases, FEven the factor of 3/4
reduction of the collisionless stationary value of n, with respect to the
thermodynamic equilibrium value should be significant enough to be easily

detected.
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APPENDIX A: LINEAR MOLECULAR STARK SHIFTS
The eigenvalues associated with the spheroidal wave functions have been
given in a power series expansion.® To evaluate the refractive index, it is
convenient to rewrite the coefficient for eacﬁ power of the perturbation
parameter in terms of a common denominator and to arrange the numerator in a
descending series ih terms of powers of quantum number M. The first three
terms are given in § III; la and lq are, respectively,

QM8+ QM* 4 QM2+
A = & L 2 Q° (Ala)

3 (20-5) (27-3) (2J-1) 5(23+1) (23+3) 5(2J+5) (2J47)

RgM® + ReME + RM* + RM2 + R

! Y

A, = . — -
Y 16(20-7) (23-5)2(23-3) 3(27-1) 7 (23+1) (23+3) 7 (2J+5) 3 (2J+7) 2 (23+9)

(A1b)

where

~4(140J% + 72078 + 68837 - 95235 . 1758J°

o
n

- 3353% + 79833 + 576J% + 91J - 15)
Q, = 8(320J2 + 1440J% + 1600J7 - 1120J% - 2172J°

+ 730J% + 2106J3 + 909J2 + 7357 + 315)

Q, = ~4(179237 + 6272J% + 110403° + 11920J*
+ 6656J% + 120032 + 6834J + 3465)
Qg = 16(288J° + 720J% + 257633 + 314432 + 24107

+ 705)
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R, = 2621440322 + 28835340721 + 675020807320 - 334233600719

165239193618 + 406880256J17 + 12640935936J16

+ 11465981952J15 - 47151794176J'% - 86929668096J13
+ 60776768000J12 + 283966432256J11 + 179093012352J10

- 331641182336J% - 597523865568J% - 3958405132837

+ 562790872768J% + 305661829696J°5 - 144966710848J%

- 144459953280J3 - 23823704448J2 + 16813742407
- 123832800
R, = - 132120576J20 - 1321205760319 - 2986868736J18

+ 10772545536J17 + 5515365580876 + 26351763456J15

- 230151454720J1? -~ 364095176704J13 + 213326028800J12
+ 709242830848J11 - 59055316992J10 - 538931681280°

+ 423846592000;8 + 536931813376J7 - 796268822912J6

- 1151804954752J5 - 4486606323274 + 732693962880J°

+ 534689631360J2 + 153715363200J + 15812496000

R = 858783744J1% + 7729053696J17 + 1665898505676

4191997132835 - 235709202432J1% - 303193325568J13

358526828544J12 + 1007821019136J11

+

+

2395260653568J%0 - 1479590572032J9

5776834200576J8 - 1235455438848J7 + 5280868948224J6

+

1601948246784J° - 3438094991424J% - 1925582232960J3

1295953634304J2 - 1226174604480F - 338863694400
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R. = - 1499463680J16 - 11995709440J!5 - 28251258880J1"%
+ 1216610304073 + 263258767360J12 + 8755884851207 11

+ 691770327040710 - 2847928647680J°

206762065920037

- 6420128499200J8
+ 5728792217600J% + 6081225021440J° + 2478926763520

4306275239040J2 + 3691965916800

+

+ 1276743582720J3

+

877688784000

R = 77017907231% + 5391253504J13 + 15384051712J12
+ 2221801472031 - 103817510912J10 - 5942611476483°

647287250944J8 + 100054482944037

+

3448504383488J8 + 4334596040704J5

611972320768J% - 6087058191360J3

1

6531288018048J2 - 3111137285760 - 554513752800

The last three terms, which give rise to the nonlinear refractive index change,
were discussed in the text. The second term gives the total quadratic Stark

shift for each J level. The expectation value is

<AW. > = hBcK =*~%-6&Eg . (A2)

Thus each J level contributes equally to the linear refractive index,

2
1+ gﬂN(fEIl“F 2&‘.1_).
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APPENDIX B: OPTICALLY-INDUCED REFRACTIVE INDEX FOR
THERMAL EQUILIBRIUM
The intensity-dependent portion of the nonlinear refractive index change
arising from the Stark shifts of the rotational levels, which are assumed to
be in thermo-dynamic equilibrium at temperature T, can be deduced from an
average of the perturbed energy. We wish to obtain the high-temperature 1limit
and show that it is equivalent to that given by the classical calculation.

The partition function including the quartic Stark terms is given by

- 2
+J EJ/kTel/kT(aJ,MP + BJ,MP )

2 e (B1)
J=0 M=-J
where -

E; = hBoJ(J+1)

L
P = E
93.m = 2 @M

A, (J,M)

By, M= " ThEe
The terms i, (J,M) and A,(J,M) are given in § III,
Following the procedure used by Debye,! o is expanded in powers of PFg

Defining the summations

B
o, = E: e kT
JM
( (B2)
5
kT
g, = 3 e
z gm JM J
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and

g = o! + == g!!
2 "% Y% 9%

the result to terms in P2(EY) terms is

1, . %2
¢ =0 +o=P 2

ot i tam@ P - (B3)

Retaining only the significant components up to the second order.in P,

the Helmholtz free energy is

$ = -kT Log o

o o 0. \2 :
1 P2 "2 1 {2
*T“g%'P@)‘?{?“ET&J] (B4)
[¢] o] O

n

where

-

‘and in the high-temperature limit,

]
2 _2 1
co 30 kT
i 2J+1 -EJ/kT
it -
Eope .
5 - 15 " \15 - (B5)

B <

. -E /KT
2 (29+D)e
J=0
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| The last term in Eq. (B5) is a function of temperature and approaches
zero as T goes to infinity. A numerical calculation shows that at
hBe/kT =5 x 107+ (CS, at room temperature) the entiré term is approximately
1075, The first term in Eq. (B4) correéponds to the unperturbed potential

energy of the molecules, The second term

. }_(éi 2)
<Aw1> = -3 \3 E (B6)

contributes to the electric-field independent dielectric constant. The

last set of terms gives
2 .
<AH.> = - 2 L1 (9_?.‘. 52) (B7)

which implies that the nonlinear index of refraction coefficient n, is

L 2\ ((8a)?

g = 2'”N(45) (ano (B8)
where N is the number of molecules per unit volume. This is exactly the
classic result.?

It is interesting to observe that whereas the classical partition func-
tion contains only the term %—(AG)EZ; the quartic Stark shift, an energy

term propotional to E% is necessary to evaluate n, quantum mechanically.
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APPENDIX C: QUARTIC STARK SHIFT CALCULATED FROM.THE
TIME-DEPENDENT PERTURBATION OF TiiE DENSITY MATRIX

It is instructive to evaluate the stétionary value of the quartic
Stark shift from the internal energy (expectation of the Hamiltonian).
This necessitates, in addition to the first order perturbed values of
the off-diagonal components of the density matrix, the perturbed values
of the diagonal components. Working from the density matrix equations,
it is sufficient to assume that the electric-field intensity is applied
slowly with respect to the inverse of the rotational transition frequencies
of the molecules. In this manner, the terms involving transitions among
the Stark shifted levels do not enter. Thus, we consider a perturbing

Hamiltonian with the following conditions:

2

1
H' = - S AqE2T(t) cos? © Lo e

T(t) =0, t<0

dT(t) > 0

d"T(t)
dt - ? m

< Ty, t>0

dt

where m is any positive integer. Substituting this perturbation function
in Eq. (Cl) and using successive partial integration, the integral in the

equation can be expanded in a series involving the above time derivatives.

Thus
: . fwr ot
. \ iw, t' dT(t') Y72
J'tH,M a2t st = M T(te V2 Ta@we
0 J,J-2 - YJ,3-2 1o; >
© -2
. t
2 . e t!
d T(;; ), u-2
dt!
+ — + ... (C2)
le_z
[o]



M . . . A M - 5 M .
Where QJ,J_2 is defined in Eq. (15) and DJ,J_2 —_Aa<EO>/2 x QJ,J-Z' Because
of the last condition in Eq. (C2), this expression can be approximated by the

first two terms, and the off-diagonal elements become

i dT(t)

(1 _ M 0  (0) T(t) —dt

P5,3-2 = P55 2E}JJ“‘°J2J2J o ¥ T : (€3)
J-2 flm‘],_2

The perturbation of the diagonal elements, obtained by substituting p(l) for

the off-diagonal elements into Eq. (13) and integrating, is

_2dT(tY) -
(2 _ M ) (0 t. T Ty .,
P7,3 ° (DJ,J-z)Z["J,J T P52, J- 2}.[ neaz, dt
M 2
. [© 2 0]°3,9-2TC®) - 4
°3-2,3-2 7 °J,] e .

J-2
The expectation of the quartic Stark shift, given by the trace of the product

of the density matrix and the Hamlltonlan, is given by

<> = [1(6)]2 i ZJ: IDZI,J_z,z ,DS)[,J+2|2 5 (0) (cs)
2 J=0 M=<J| he f A

J-2 . |
It can be easily shown that, inside. the bracket; the term with any particular

quantum number J,M is exactly hBKZAZ, the quartic Stark shift given in § III,
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TABLE I. Nonlinear coecfficicnt npy for collisionless gases

composed of linear

molecules.
Temperature, Ao ¢ 1023, B, np + 1013
(°K) esu . em™! esu/mole
S, 300 75.0% 0.1092¢ 171.0
Co, 300 20.3° 0.3902% 12.6
CoHy 300 27.9P 1.177¢ 23.7
N0 300 27.9P 0.4116% 23.7
Ny 300 | 9.3° 2.001° 2.56
05 300 11.4° 1.438° 3.94
HC1 300 7.4° 10.44° 1.53
HBr 300 9.1° §.360° 2.35
“Hyo 380 o os.02° 59.30° 0.434
‘D, 39 | 2.92° 29.90° 0.803

2r. Y. Chiac, E. Garmire, and C. H. Townes, Phys. Rev. Letters 13,

479 (1964).

bref. 16.

€K. B. MacAdam and‘N. F. Ramsey, Phys. Rev. A6, 898 (1972).

dRef. 17.

®Ref. 11.



TABLE II. Nonlinear coefficient n, for collisionless gases composed of

symmetric top molecules at 296°K,

A2 B,2 pe + 1025,°  E(my ng + 1012,

em! em™! esu esu/mole
CH5C1 5.090 0.4434 12.8 0.843 4,27
CoHg 2.538 0.6621 15.1 0.722 5.09
CegHg 0.0948 0.1896 -59.6 0.429 47.0
NH3 | 6.186 9.444 2.40 0.436 0.0776

aSee Ref, 17.

bSee Ref, 16,

TABLE III. Time separation between refractive index bursts and the optimuﬁ

width of the optical excitation at 296°K.

Ty < 1/4Bc Top

x1012 sec x1012 sec
cS, 76.32 0.80
Co, 21.37 0.42
N,0 20.26 0.41
CH3C1 17.02 0.35
CoHg 12.59 0.29
CeHe 43.98 0.47
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TABLE IV. Detectability of refractive index bursts for géses at 1 atm pressure for a propagation length of
‘1 m. The peak electric field intensity of the inducing optical pulse is assumed to be 2 x 103 esu, and
the wavelength of the probe beam is 0.53 um. E[' is the electric-field component of the probe pulse which
is parallel toc the e;ectric field of the excitation pulse; ?L is that perpendicular to the excitation

. pulse field.

Optimum Relative phase Fraction of
Temperature pulse width ny (T,P), shift of Elland El. diode pulse energy
Substance °K 10712 sec . esu/cm’ Ad, radian transmitted, (A¢/2)2
CSy 319 0.77 7.2 x 10713 0.26 - 0.017
N0 296 0.41 1.07 x 10718 0.038 3.6 x 104
CeHg 353 0.43 1.60 x 1013 0.057 8.1 x 107"

CH3C% 296 0.37 1.91 x 10716 0.0068 1.2.x 10-15




Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

FIGURE CAPTIONS

The lowest Stark shifted rotational energy levels for a fixed
electric~field intensity. Those arising from a permanent dipole
moment are illustrated on the left-hand side and those arising
from the induced dipole moment are shown on the right-hand side.
The Stark shifts of the rotational levels due to a permanent

dipole moment u are given by

CW%F g - 3l

BW = $Be T (0D (253+3

where F 1s the amplitude oﬁ the low-frequency or de field.

The Stark shifted rotational energy levels arising from the polar-
izability anisotropy plotted as a function of K = Aa<§ . E>/(2th).
Solid lines indicate the energy shifts obtained from the power
series approxzimation and dotted linmes show that obtained from
numerical calculations.9 Note that different scales are used

for the low-intensity region and the saturated region.

Nonlinear coefficients Nz(n), N3(n}, and N4(n) and the factor

nZ plotted as a function of hBe/kT.

Saturation of the induced refractive index at low temperatures

for a collisionless gas. An = n-n and K is the perturbation

parameter-% AE_Sﬁ-§>/th.

The dependence of the effective factor F(T) for symmetric top
molecules on the ratio of the rotational constants A and B,
These were evaluated for the high-temperature limit (f = 12006K,

B = 0.1092cm_1) for which F(T) depends only on A/B.
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Figure 6.

Figure 7.

Figure 8.

Theoretically predicted time variation of the refractive index
change induced by a Gaussian-shaped optical pulse in CS2 vapor
at 296°K. The pulse widths t as defined by Eq. (27) for the

12
se

individual curve are (a) T = 5 x 10 c. The curves are

normalized with respect to Anm = (ZHN/BOnO) x {(AG)EABIZkT}

-10 A2

(which is 1.74 x 10 /2 esu/mole. (b) 7 = 1/ x 10—12 sec.

Time evolution for the probability demsity function |v]2, (where
y is the wave function) of a state that is the superposition of
the J=0, M=0 and the J=2, M=0 rotational states of a linear
molecule. (a) Polar plot of the rotational wave functionms of the
ground state- and of the excited state with quantum numbers J=2,
M=0. The moleculer axis is perpendicular to the plane of the
paper. (b)-(d) Probability density functions of a superposition
state at three moments subsequent to an optical impulse excit-

ation; (b) at wt = 0 and wt = m, |p|2 = (1/8)(5-6 cos20+9¢c0s40),

1]

(c) at wt = n/2, }v|2 = (1/8) (1+6cos?8+9cos™e),

(d) at wt = 31/2, |y]? = (1/8) (9-18cos?8+9cos™8). (e) and (f)

Deviation of the probability density functions from that immedi-
ately after the excitation at different moments;

(e) at wt /2, Alg|2 = (3cos?0-1)/2.

(£) at wt 3ﬂ/2,A|¢|2 a (1-3cos?0/2., The refractive index
change contributed by the superposition state is proportional to
alul? at-any given time t.

Amplitudes of the coefficient Ty for CS, vapor at 296°K. The
curve is normalized with respect to the maximum coefficient

Tb . , where Jmax = 42,
max
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Figure 9. Normalized peak amplitudes of the rcfractive index Anp of the
refractive index burst for a time delay 1/4 Bc after excitation
for 052 vapor at 2960K as a function of rthe excitation pulse

width (defined by Eq. (24)). The normalization is as for Fig. 6.

Figure 10. Theoretically predicted refractive index bursts induced by
Gaussian-shaped optical pulses. (a) Bursts in CS; vapor at
296°K. The normalization is as for Fig. 6. The excitation
pulse widths are (I) 7 = 0.2 x 10712 sec, (II) T = 0.8 x 10!?
.sec, and (III) T = 2 x 10-12 sec, (b) Bursts in CH3Cl vapor at
296°K. The ﬁd;malization constant is Ans = F(T)(2ﬂN/30ﬂo)
[ (Aw) 2A%/2kT] where F(Tj = 0.843 (equal to 4.27 x 10712A%/2 esu/mole).
The excitaticon pulse widths are (I) t = 0.1 x.lo'lz-sec, (iI)
T = 0.37 x 1012 sec, and (III) 7 = 10712 sec.
Figure 11. illustration of refractive index bursts induced by an optical
pulse whose intensity is not symmetric about any time; CS, at
296°K has been assumed; Anm is the same as for Fig. 6 but with
A2 = Cy2, (I) The contribution to the burst by the portion of the
optiéal pulse that is an even function of time (Eq. (29¢)).
(II}) The contribution due to the portion that is an odd function
of time (Eq. (29b) with C; = 0.4C,), and (III) the total theoretically

predicted burst,
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